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ABSTRACT
Background: Individual differences in human perception of sweet-
ness are partly due to genetics; however, which genes are associated
with the perception and the consumption of sweet substances remains
unclear.
Objective: The aim of this study was to verify previous reported
associations within genes involved in the peripheral receptor systems
(i.e., TAS1R2, TAS1R3, and GNAT3) and reveal novel loci.
Methods: We performed genome-wide association scans (GWASs)
of the perceived intensity of 2 sugars (glucose and fructose) and
2 high-potency sweeteners (neohesperidin dihydrochalcone and
aspartame) in an Australian adolescent twin sample (n = 1757), and
the perceived intensity and sweetness and the liking of sucrose in a
US adult twin sample (n = 686). We further performed GWASs of
the intake of total sugars (i.e., total grams of all dietary mono- and
disaccharides per day) and sweets (i.e., handfuls of candies per day)
in the UK Biobank sample (n = ≤174,424 white-British individuals).
All participants from the 3 independent samples were of European
ancestry.
Results: We found a strong association between the intake of total
sugars and the single nucleotide polymorphism rs11642841 within
the FTO gene on chromosome 16 (P = 3.8 × 10−8) and many
suggestive associations (P < 1.0 × 10−5) for each of the sweet
perception and intake phenotypes. We showed genetic evidence for
the involvement of the brain in both sweet taste perception and sugar
intake. There was limited support for the associations with TAS1R2,
TAS1R3, and GNAT3 in all 3 European samples.
Conclusions: Our findings indicate that genes additional to those
involved in the peripheral receptor system are also associated with
the sweet taste perception and intake of sweet-tasting foods. The
functional potency of the genetic variants within TAS1R2, TAS1R3,
and GNAT3 may be different between ethnic groups and this warrants
further investigations. Am J Clin Nutr 2019;109:1724–1737.

Keywords: sweet taste, perception, preference, sugar intake,
genome-wide association scan, BMI, FTO, taste receptor

Introduction
The perception of and liking for a given degree of sweetness

vary between individuals. Twin studies have shown that heritabil-
ities (h2) of preferences for sucrose solution and sweet foods
range from low (1, 2) to moderate (3, 4) (h2 = 0.23–0.40). Our
twin study (5) showed moderate heritability on the perceived in-
tensities of the monosaccharides glucose (h2 = 0.31) and fructose
(h2 = 0.34) and of the high-potency sweeteners neohesperidin
dihydrochalcone (NHDC; h2 = 0.31) and aspartame (h2 = 0.30);
a common genetic factor accounted for >75% of the genetic
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variance in each sweet taste. However, the particular genes and
genetic variants that are responsible for variation in human sweet
taste perception and the intake of sweet foods remain largely
underexplored.

Previous studies reported that genetic variants within or near
sweet taste receptor genes TAS1R2 (6) and TAS1R3 (7), and a
downstream gene, GNAT3 (8), are associated with the variance
of sucrose sensitivity (i.e., the ability to discriminate between
sucrose solutions of different concentrations). Variants within
TAS1R2 were also shown to be associated with the intake of
sugars and sweet foods in both children (9–11) and adults (6,
12–14). Although variants within TAS1R3 were not associated
with the intake of sweet foods (9, 12, 15), they were found to be
associated with the preference for sucrose solutions (16). Other
genetic variants reported to be associated with sugar consumption
are within the glucose transporter gene GLUT2 (13, 17) (also
known as SLC2A2) and the fibroblast growth factor gene FGF21
(18–21). Notably, except for the association with FGF21 which
was identified in large genome-wide association studies, these
associations with both sweet taste perception and intake of
sweet substances were reported in studies of small sample sizes
(n ≤ 160 and 1037, respectively) and some studies (7, 8, 13,
17) were even comprised of mixed ethnicities (i.e., Caucasians,
Asians, and African Americans) so they remain to be validated in
larger independent samples. A summary of these associations is
presented in Table 1.

To verify previously reported associations and reveal novel
loci, we performed genome-wide association scans (GWASs)
of sweet taste perception (primary outcome variables) in an
Australian adolescent twin sample (n = 1757) and a US adult
twin sample (n = 686), and the intake of sugars and sweets
(i.e., candies) (secondary outcome variables) in the UK Biobank
sample (n = ≤174,424) (22). We also looked for evidence
for genetic variation in biological pathways and compared the
expression levels of associated genes in different human tissues
including taste buds and brain tissues.

Methods
This article used the STrengthening the REporting of Genetic

Association Studies (STREGA) reporting guidelines (23).

Samples

The Australian sample was a subset of participants from the
Brisbane Adolescent Twin Study (24), also referred to as the
Brisbane Longitudinal Twin Study, who performed the taste test
between 2003 and 2014. Most twins performed the taste test
at age 14 y but with older siblings the mean ± SD age of
the sample was older (16.1 ± 2.7 y). Zygosity was determined
from genome-wide genotyping. The US sample was a subset of
adult twins who performed the taste test at the annual Twins
Days Festival at Twinsburg, Ohio, between 2009 and 2015. Only
Caucasians were included in the present study. Zygosity was
assessed with 3 methods: self-reported identity, experimenter
ratings of photographs for physical similarity, and genome-wide
genotyping. The UK Biobank recruited 502,650 participants
(aged 37–73 y; 54.4% female; 5% of those invited) from 21
centers across England, Wales, and Scotland between 2006 and

2010 (22). Intake of total sugars was available for 211,051
participants and intake of sweets was available for a subsample
of 25,533 participants.

Ethical statement

The Australian study was approved by the QIMR Berghofer
Medical Research Institute Human Research Ethics Committee.
The US study was approved by the Institutional Review Board
(#4) of the University of Pennsylvania. The UK Biobank study
was approved by the UK National Health Service National
Research Ethics Service. Written consent was obtained from both
the participants and their parents (for subjects younger than 18 y
old).

Taste test in the Australian and US samples

For the Australian sample, detailed information on the taste
test and data processing has been described previously (5).
Briefly, the taste battery included duplicated presentations of 4
sweet (0.60 M glucose, 0.30 M fructose, 8.0 × 10−5 M NHDC,
and 1.4 × 10−3 M aspartame) and 5 bitter (propylthiouracil,
sucrose octaacetate, quinine, caffeine, and denatonium benzoate)
solutions, plus 2 water solutions as controls. The 20 samples
were presented in random order. Participants were instructed
to rate their perceived intensity for each solution using a
general labeled magnitude scale (gLMS) (25), with labels of
no sensation (0 mm), barely detectable (2 mm), weak (7 mm),
moderate (20 mm), strong (40 mm), very strong (61 mm), and
strongest imaginable (114 mm). Mean intensity ratings from
the duplicate presentations for each stimulus were used in the
present study. Because the perceived intensity of the 4 sweeteners
was highly correlated at the genetic level (genetic correlation
[rg] = 0.78–0.89) and most of the phenotypic variance (71%
for glucose, 77% for fructose, 64% for NHDC, and 59% for
aspartame) was accounted for by a common factor, as shown in
our previous multivariate variance component analysis (5), we
further calculated a general sweet factor score (gSweet, a mean
intensity of the 4 sweet tastes weighted by loadings from the
common factor). A total of 5 phenotypes—perceived intensity
of glucose, perceived intensity of fructose, perceived intensity
of NHDC, perceived intensity of aspartame, and gSweet—from
the Australian sample were analyzed. For the US sample, as
described previously (2), participants tasted sweet (sucrose),
bitter (phenylthiocarbamide and quinine), sour (citric acid), and
salty (sodium chloride and potassium chloride) solutions, and
other tastes (e.g., vegetable juice) and rated perceived sweetness,
bitterness, sourness, saltiness, burn, intensity, and liking using
a 7.7-cm visual analog scale (VAS). A total of 3 phenotypes—
perceived intensity, perceived sweetness, and liking of the 0.35 M
(i.e., 12% wt:vol) sucrose solution—were included in the present
study. The 3 phenotypes were weakly to moderately correlated
(phenotypic correlation [rp] = 0.21–0.43) (2).

Intake of total sugars and sweets in the UK Biobank sample

UK Biobank is a large long-term biobank study from the
United Kingdom that aims to identify the contribution of genetic
and environmental factors to disease. Detailed information on
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TABLE 1 Genetic variants previously reported to be associated with the perception and intake of sweet substances1

Gene SNP:allele Study population Association with sweet phenotypes

TAS1R2 rs12033832:A P1-1: 696 young adults2 from the Toronto Nutrigenomics
and Health study completed dietary assessment and a
subset (n = 95) completed sensory tests (6)

Higher sucrose sensitivity (lower detection
threshold) and lower sugar intake (grams per day)
among those with BMI ≥ 25; opposite
associations among those with BMI < 25.

P2: 30 young adults2 from an Australian cohort (12) Higher percentage energy intake from carbohydrate
in an ad libitum meal session ≤ 40 min.

P3: 144 unrelated individuals (92 Europeans, 37 Asians,
15 Africans) (7)

No association with sucrose sensitivity.

rs3935570:T P1-1 (6) Higher sucrose sensitivity (lower detection
threshold) among those with BMI ≥ 25; no
association with sugar intake (grams per day)
regardless of BMI.

rs35874116:A P1-2: 1037 young adults (482 whites, 362 East Asians,
114 South Asians, 79 others) from the Toronto
Nutrigenomics and Health study (13)

Higher intake of carbohydrate (grams per day) and
sugar (grams per day) among those with
BMI ≥ 25.

P4: 100 individuals from the Canadian Trial of
Carbohydrate in Diabetes multicenter intervention
study2 (13)

Higher intake of sugar (grams per day).

P5: 312 children (43.2% white) from a Brazilian cohort
(9)

Higher sugar intake (kilocalories per day) at age 3.9
y; no association at ages 1.1 and 7.7 y.

P2 (12) Higher intake of sweets (grams) in an ad libitum
meal session ≤ 40 min.

P6: 441 adults2 from a Mexican cohort (14) Lower intake of carbohydrate (grams per day) and
percentage energy intake from carbohydrate.

P7: 47 children (87.5% Caucasian) from the Guelph
Family Health Study (10)

Higher percentage energy intake from snacks.

P1-1 (6) No association with sucrose sensitivity and sugar
intake (grams per day).

P3 (7) No association with sucrose sensitivity.
rs121377303 P8: 65 adults (85% Caucasian) and 60 children (81%

Caucasian) from the Guelph Family Health Study (11)
Association with sucrose suprathreshold among

adults.
rs75346183 P8 (11) Association with preference for sucrose solution

among children.
rs97017963 P8 (11) Association with preference for sucrose solution and

percentage energy intake from added sugar among
children.

TAS1R3 rs307355:C P3 (7) Higher sucrose sensitivity.
P2 (12) No association with percentage energy intake from

carbohydrate or intake of sweets (grams) in an ad
libitum meal session ≤ 40 min.

rs35744813:C P3 (7) Higher sucrose sensitivity.
P9: 76 mothers (32.9% white, 52.6% black, 5.3%

Hispanic/Latino/Latina, 1.3% Asian, 7.9% others) and
101 children (31.7% white, 42.6% black, 8.9%
Hispanic/Latino/Latina, 2% Asian, 14.9% others) (16)

Preference for a sucrose solution of a lower
concentration among mothers; no association in
children.

P10: 235 children (46 whites, 136 blacks, 2 Asians, 51
others) (15)

No association with sucrose detection threshold and
percentage energy intake from added sugar.

P5 (9) No association with sugar intake (kilocalories per
day).

P2 (12) No association with percentage energy intake from
carbohydrate or intake of sweets (grams) in an ad
libitum meal session ≤ 40 min.

GNAT3 rs7792845:T P11: 160 unrelated individuals (103 Caucasians, 41
Asians, 16 Africans) (8)

Higher sucrose sensitivity.

rs940541:T P11 (8) Higher sucrose sensitivity.
rs1107660:T P11 (8) Higher sucrose sensitivity.
rs1107657:T P11 (8) Higher sucrose sensitivity.
rs1524600:C P11 (8) Higher sucrose sensitivity.
rs6467217:T P11 (8) Higher sucrose sensitivity.
rs6970109:C P11 (8) Higher sucrose sensitivity.
rs6975345:T P11 (8) Higher sucrose sensitivity.

rs10242727:A P11 (8) Higher sucrose sensitivity.
rs6467192:G P11 (8) Higher sucrose sensitivity.
rs6961082:C P11 (8) Higher sucrose sensitivity.

(Continued)
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TABLE 1 (Continued)

Gene SNP:allele Study population Association with sweet phenotypes

GLUT2 rs5400:C P1-2 (17) Higher intake of carbohydrate (grams per day) and
sucrose (grams per day).

P4 (13) Higher sugar intake (grams per day).
FGF21 rs838133:A P12: 33,533 Europeans from the DietGen Consortium

(18)
Lower percentage energy intake from carbohydrate.

P13: 6515 adults from a Danish cohort2 (20) Higher weekly intake of sweet snacks and candies.
P14: 176,989 Europeans from the UK Biobank (21) Higher percentage energy intake from carbohydrate.

rs838145:G P15: 38,360 Europeans from the CHARGE Consortium
(19)

Higher percentage energy intake from carbohydrate.

1SNP:allele, SNP and the effect allele. Each study population is given a number (e.g., P1) along with reporting its sample size and ethnicity (as provided
in the original study) when it is referred to the first time. P1-1 and P1-2 are from the same study cohort but the sample size of P1-2 is bigger. SNP, single
nucleotide polymorphism.

2Unknown ethnicity.
3Unknown effect allele.

phenotyping and genotyping is presented elsewhere (22). Self-
reported dietary data were collected via online 24-h dietary
recall questionnaires. Intake of total sugars (grams per day) was
calculated based on food and beverage consumption. Total sugars
represent all dietary mono- and disaccharides, including those
from milk, fruit, and vegetables but excluding any supplements.
Intake of sweets (handfuls of candies per day) was only collected
from participants who reported consuming any biscuits (i.e.,
cookies), chocolate, or sweets (i.e., candies). They were asked,
“How many handfuls of sweets (hard and soft, e.g., peppermints,
toffees, fudge, fruit flavoured sweets) did you have?” Answers
included quarter, half, 1, 2, 3, 4, and ≥5, which were converted
to 0.25, 0.5, 1, 2, 3, 4, and 5 before analysis.

Genotyping, imputation, and quality control

For the Australian sample, genotyping was performed with
the Illumina 610-Quad BeadChip for 1255 participants and
HumanCoreExome-12 version 1.0 BeadChip for 502 partici-
pants. Single nucleotide polymorphisms (SNPs) were phased us-
ing ShapeIT (26) and then imputed using Minimac3 (27) and the
Haplotype Reference Consortium of Caucasian European ances-
try (Release 1) (28), with 7,035,128 SNPs passing quality control
(QC) as outlined previously (29). To ensure SNPs were imputed
with high data quality, we excluded those with a call rate < 90%,
minor allele frequency < 0.05, imputation score < 0.3, and
Hardy–Weinberg equilibrium score of P < 1.0 × 10−6, with a
total of 4,381,914 SNPs remaining. Individuals who were >6
SDs from the centroid of the first 2 genetic principal components
(PCs) PC1 and PC2 were excluded, so the sample was of
exclusively European ancestry. For the US sample, genotyping
was performed using the HumanOmniExpressExome-8 version
1-2 Chip and imputed using 1000 Genome Phase 1 integrated
Haplotype, with 6,175,124 SNPs passing QC. With the same
post-imputation QC criteria, 5,833,901 SNPs were used in
the analyses. The Australian and US samples had a total of
4,001,140 SNPs in common. All UK Biobank participants have
been genotyped using the Affymetrix UK BiLEVE Axiom array
or Affymetrix UK Biobank Axiom array comprising 805,426
markers in the official release. Imputations were performed using
IMPUTE2 and UK10K haplotype and Haplotype Reference
Consortium reference panels, as described elsewhere (22). SNPs

with a call rate < 90%, minor allele frequency < 0.01,
imputation score < 0.3, and Hardy–Weinberg equilibrium
score of P < 1.0 × 10−6 were excluded, with a total of
10,353,649 SNPs remaining in the analyses. Only participants
who classified as white British, determined by similarity of
genetic PC values (PC1, PC2), were included in the present
study.

Statistical analysis

The genome-wide association analysis for each of the 5
phenotypes from the Australian study and 3 phenotypes from
the US study was conducted using genome-wide efficient mixed-
model association (30). As described previously (31), this method
fits a linear mixed model for each SNP and uses the genetic
relatedness matrix, calculated from genome-wide genotyping
data, to account for the relatedness of individuals (i.e., twins and
siblings from the same family). For the Australian sample, the
covariates included age, sex, and the history of ear infection,
previously shown to be associated with taste intensity ratings of
this sample (5), and the first 5 genetic PCs. Before modeling, a
square root transformation was applied to each of the 5 intensity
scores to obtain a more normal distribution (32). For the US
sample, the covariates included age, sex, and the first 2 genetic
PCs. A meta-analysis of the perceived intensity was performed
using the Australian gSweet scores and the US sucrose intensity
scores and the P value–based approach weighted by sample
size implemented in the software METAL (33). The GWASs of
the intake of total sugars and sweets in the UK Biobank were
performed using BOLT-LMM (34). This fits a linear mixed model
by including a genetic relation matrix derived from genotyped
SNPs as a random effect to correct for population structure and
cryptic relatedness. Covariates included age, sex, and the first 10
genetic PCs. Because the associations between TAS1R2 and the
intake of sugars were suggested to depend on BMI (in kg/m2)
(6, 13), we also performed analyses including BMI as an extra
covariate or stratifying the sample into 2 groups based on a cutoff
of BMI = 25. To ensure that any potential technical or population
stratification artifacts had a negligible impact on the results, we
calculated the genomic inflation factor (λ) for the Australian and
the US phenotypes (λ ranged between 0.99 and 1.02). As λ can
be inflated by a large sample size, we calculated the linkage
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disequilibrium (LD) score regression intercepts (35) for the UK
Biobank phenotypes; intercepts of 1.05 and 1.01 for the intake
of total sugars and sweets, respectively, indicated little or no
population stratification. See Supplemental Figure 1 for Q–Q
plots. A priori suggestive and significance thresholds were set
at P = 1.0 × 10−5 and 5.0 × 10−8, respectively. Given that the
sweet phenotypes were correlated within each sample (2, 5), we
estimated the number of independent tests to be 2.62, 2.66, and
1.49 for the Australian, the US, and the UK Biobank sample,
respectively, using a matrix spectral decomposition algorithm
(36); the Bonferroni-corrected significance thresholds became
P = 1.9 × 10−8, 1.9 × 10−8, and 3.4 × 10−8, respectively.
Manhattan and Q–Q plots were created using FUMA-GWAS
(37). Regional associational plots were created using LocusZoom
(38).

Gene-based association analyses were performed by sum-
marizing the SNP association results at the gene level. The
contribution of each SNP to the gene-based association was
adjusted by the LD between SNPs within a gene. This was done
using the function “fastBAT” implemented in the software GCTA
(39). With 24,765 genes provided in the Genome Reference
Consortium Human Build 37 (GRCh37/hg19) and the number
of independent phenotypes for each of the Australian, the US,
and the UK Biobank samples, conservative Bonferroni-corrected
thresholds were set at P = 7.7 × 10−7, 7.6 × 10−7, and
1.4 × 10−6, respectively.

Further, we examined the associations between phenotypes
(predicted by GWAS results) and gene expression levels (pre-
dicted by expression quantitative trait loci, i.e., the associations
between SNPs and gene expression levels, results from the GTEx
project [40]) using MetaXcan (41). With a library of 44 tissue
models (including the “cross-tissue” model) from the GTEx
project (40), the maximum number of 11,440 genes expressed per
tissue, and the number of independent phenotypes for each of the
Australian, the US, and the UK Biobank samples, conservative
Bonferroni-corrected thresholds were set at P = 3.8 × 10−8,
3.7 × 10−8, and 6.6 × 10−8, respectively.

Tissue enrichment and pathway analyses were performed
with methods implemented in DEPICT version 1.1 (42). The
preference was to use only genome-wide significant SNPs if
there were ≥10 independent associations with P < 5.0 × 10−8.
Owing to the lack of genome-wide significant signals, we used
SNPs with P < 1.0 × 10−5. For traits with <10 independent
loci with P < 1.0 × 10−5 (i.e., perceived intensity of glucose,
fructose, aspartame, and the meta-analysis results), we included
SNPs with P < 1.0 × 10−4. We set the Bonferroni-corrected
thresholds for tissue-enrichment analysis at P = 9.1 × 10−5,
9.0 × 10−5, and 1.6 × 10−4 for the Australian, the US, and the
UK Biobank sample, respectively, and for pathways analysis at
P = 1.3 × 10−6, 1.3 × 10−6, and 2.3 × 10−6 for the Australian,
the US, and the UK Biobank sample, respectively (considering
the number of independent phenotypes in each sample and
assuming that gene expressions in all 209 tissue/cell samples are
independent, and all 14,463 pathways are independent), and the
false discovery rate at <0.05.

We calculated the genetic correlations between the intake of
total sugars and sweets, and BMI in the UK Biobank sample
using the online platform LD hub (43), which takes the GWAS
summary results to perform LD score regression and estimate the
genetic correlation between 2 traits (44).

Gene expression

For genes near the identified SNPs or genes identified in gene-
based or pathway analyses, we examined their expression levels
in 31 different tissues using our in-house data of human taste
tissues and the publicly available data from GTEx (version 7, 30
general tissue types) (40). For the in-house assay, we collected
6 taste samples from human fungiform papillae of adults (5 men
and 1 woman) using published procedures (45) and isolated the
RNA following the manufacturer’s directions for processing the
taste tissue with Quick-RNA MiniPrep R1054 (Zymo Research).
We evaluated RNA quality expressed as an RNA integrity
number using the Agilent 2200 TapeStation system (Agilent
Technologies). The 6 samples with sufficient RNA quality,
as determined by the Next-Generation Sequencing Core of
the University of Pennsylvania (RNA integrity number > 7),
underwent library preparation and sequencing (100 base pairs
single-end) on the HiSeq 4000 sequencer (Illumina) using the
manufacturer’s sequencing protocols. We mapped reads to the
reference genome (GRCh38.p10) after the raw sequence data
in fastq format passed quality filters of Trimmomatic (46) and
we normalized the counts using the R (The R foundation
for Statistical Computing) package ballgown (47), with the
median expression level for each gene used in the analyses. The
expression levels (e.g., reads per kilo base per million mapped
reads and transcript per million) for all genes in all tissue types
were winsorized at 1 and 50 and then log2 transformed and
presented in a heatmap.

Results

Sample characteristics

The main characteristics of the 3 samples of European ancestry
are summarized in Table 2, together with the sweet phenotypes
measured in each sample. The Australian adolescent sample
was younger than the US and the UK Biobank samples. There
were more female than male participants in all 3 samples.
For the Australian sample, the mean intensity ratings for all
sweet solutions were between “moderate” and “strong” on the
gLMS. The US adults rated perceived intensity of the sucrose
solution slightly below the middle point on the VAS and the
perceived sweetness and liking of the same solution toward the
upper end of the scale. Among all UK Biobank participants
who reported their intake data, ∼83% were white British and
these were included in the GWAS. See Supplemental Figure 2
for participant flowcharts showing the selection process for the
participants from each sample.

GWAS

The strongest association was between the intake of total
sugars in the UK Biobank sample and rs11642841 within the
FTO gene on chromosome 16 (Figure 1, Supplemental Table
1). This variant within FTO was one of the first variants to
be associated with BMI in genome-wide analyses and has
been repeatedly reported to be robustly associated with BMI
and related traits (48, 49). The rs11642841 C allele associated
positively with intake of total sugar (β = 0.928 g/d, SE = 0.169,
P = 3.8 × 10−8), inversely with BMI (β = −0.301 kg/m2,
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TABLE 2 Characteristics of the Australian, the US, and the UK Biobank samples of European ancestry1

Mean ± SD (range)

Australian
n = 1757 from 942 families, comprised of 222

complete MZ pairs, 427 complete DZ twin
pairs, and 459 unpaired twins and siblings;
54.1% female

Age, y 16.1 ± 2.7 (12.0–25.8)
Glucose intensity 31.6 ± 16.1 (2.5–111.0)
Fructose intensity 32.0 ± 17.7 (2.0–114.0)
NHDC intensity 34.7 ± 18.9 (2.0–114.0)

Aspartame intensity 26.6 ± 16.4 (0–112.5)
gSweet 31.4 ± 15.2 (4.4–102.6)

US
n = 686 from 347 families, comprised of 310

complete MZ pairs, 29 complete DZ twin
pairs, and 8 unpaired twins and siblings;
74.5% female

Age, y 36.8 ± 15.5 (18.0–80.0)
Sucrose intensity 3.4 ± 1.4 (0–7.6)

Sucrose sweetness 5.0 ± 1.7 (0–7.6)
Sucrose liking 4.8 ± 1.5 (0–7.6)

UK Biobank
n = 174,424 for intake of total sugar;

n = 21,447 for intake of sweets;2 54.5%
female3

Age,3 y 56.41 ± 7.9 (39.0–72.0)
Intake of total sugars, g/d 121.1 ± 50.7 (0–1156.9)

Intake of sweets,2 handfuls/d 1.0 ± 1.1 (0.25–5.0)

1DZ, dizygotic; gSweet, the general sweet factor (a weighted mean of ratings of glucose, fructose, NHDC, and aspartame); MZ, monozygotic; NHDC,
neohesperidin dihydrochalcone. The Australian sample rated perceived intensity of sweet solutions using a general labeled magnitude scale; the US sample
rated perceived intensity, sweetness, and liking for sucrose solution using a visual analog scale.

2Intake of sweets was only collected from participants who reported consuming any biscuits (cookies), chocolate, or sweets (candies).
3Based on the sample of 174,424 participants with intake of total sugars.

SE = 0.010, P = 6.1 × 10−211), but not with the intake of
sweets (β = 0.002 handfuls/d, SE = 0.010, P = 0.84), in the
UK Biobank sample. The association between rs11642841 and
the intake of total sugar remained strong after including BMI as
a covariate (β = 0.772 g/d, SE = 0.169, P = 4.9 × 10−6). We
further examined the associations between the 3 traits and found
that the intake of total sugars was negatively associated with BMI
(rp = −0.04; 95% CI: −0.04, −0.03; rg = −0.23; 95% CI: −0.29,
−0.17), whereas the intake of sweets was positively associated
with BMI (rp = 0.09; 95% CI: 0.07, 0.10; rg = 0.67; 95% CI:
−0.27, 1.00) at both phenotypic and genetic levels (Table 3).

There were several suggestive associations for each of the
sweet taste phenotypes (P < 1.0 × 10−5). In the Australian
sample these included 7 independent associations for glucose
intensity, 3 for fructose intensity, 13 for NHDC intensity, 6 for
aspartame intensity, and 3 for gSweet (Figure 2, Supplemental
Table 2). In the US sample there were 10 associations for
sucrose intensity, 14 for sucrose sweetness, and 13 for sucrose
liking (Figure 3, Supplemental Table 3). The meta-analysis of
gSweet for the Australian sample and sucrose intensity for the US
sample showed 4 additional suggestive independent associations
(Figure 4, Supplemental Table 4). We also found 53 suggestive
associations for the intake of total sugars and 14 for the intake of
sweets in the UK Biobank sample (Figure 1, Supplemental Table
1). Information on each SNP including its location (chromosome
and base pair), effect allele and non-effect allele, effect size
(β, SE, percentage of variance accounted for), P value, and the
nearest gene is reported in Supplemental Tables 1–4.

We examined the cross-associations between all suggestively
associated SNPs and sweet phenotypes. Whereas the SNPs
identified in the Australian twins were associated with all 5
phenotypes in the same sample, and in the same direction, their
associations with phenotypes in the US and the UK Biobank
samples were mostly null (Figure 5, Supplemental Table 5).
Similarly, all SNPs identified in the US sample were associated

with all 3 US phenotypes in the same direction but their
associations with the phenotypes in the Australian and the UK
Biobank samples were close to the null. Among the 4 SNPs
identified in the meta-analysis of the gSweet in the Australian
sample and sucrose intensity in the US sample, rs17457384
was associated with the intake of sweets in the UK Biobank
sample (P = 0.004), with the allele associated with higher sweet
intensity ratings being associated with a higher intake of sweets.
Lastly, the SNPs identified in the UK Biobank sample were
weakly or null associated with all other phenotypes in any sample
(Supplemental Table 6).

In further functional analyses we found that 12 of the 139
suggestively associated SNPs (8 for the intake of total sugars,
1 for the intake of sweets, 1 for NHDC intensity, 1 for sucrose
sweetness, and 1 for the meta-analysis of gSweet and sucrose
intensity) were in high LD (r2 ≥ 0.6) with nonsynonymous
variants within protein coding (exonic) regions (Supplemental
Table 7). All 12 SNPs were correlated with missense mutations;
and 2 SNPs, rs62060920 and rs603985, which were suggestively
associated with the intake of total sugars, were further correlated
with nonsense mutations that create stop codons within the same
gene (i.e., MAPT and FUT2, respectively).

Gene-based tests using fastBAT did not identify any significant
association (see Supplemental Table 8 for the associations with
P < 1.0 × 10−5), whereas the results from MetaXcan showed a
significant association between the intake of total sugars and the
expression of FTO in the muscle tissue (P = 2.62 × 10−8; see
Supplemental Table 9 for the top associations). Pathway analy-
ses showed that the perceived intensity of sucrose was associated
with the stomach inflammation pathway (P = 2.2 × 10−13 and
false discovery rate < 0.05). Genes involved in this pathway were
SLC50A1, AL645568.1 (RP11-296O14.3), CCDC68, GPBP1,
EFNA1, NALT1 (RP11-611D20.2), B3GNTL1, CNTN5, FSHR,
and WLS. No association in the tissue enrichment analyses
reached the statistical significance threshold. The strongest
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1730 Hwang et al.

FIGURE 1 Manhattan plots displaying the association -log10P value for each SNP in the genome and the intake of total sugars (grams per day; n = 174,424)
(A) and the intake of sweets (handfuls of candies per day; n = 21,447) (B) in the UK Biobank white-British participants. Only the top SNP with P < 1.0 × 10−5

for each chromosome is labeled. SNP, single nucleotide polymorphism.

associations (P < 0.01) were found within the genitalia, muscles,
connective tissues, pharynx, immune system, and central nervous
system (Supplemental Table 10).

Associations with TAS1R2, TAS1R3, GNAT3, GLUT2, and
FGF21

SNPs within TAS1R2, TAS1R3, and GNAT3 previously re-
ported to be associated with the taste sensitivity of sucrose

solution were not associated with any of the sweet perception or
preference phenotypes in the Australian or US samples (P > 0.05
for all SNP associations, except for the association between
TAS1R3 rs307055 and sucrose intensity ratings with P = 0.03;
Supplemental Table 11; Supplemental Figure 3). However, the
TAS1R3 alleles associated with higher sucrose sensitivity tended
to decrease ratings for all Australian and US sweet phenotypes.

SNPs within TAS1R2 and TAS1R3 were not associated with
the intake of total sugars and sweets in the UK Biobank sample

TABLE 3 Genetic and phenotypic correlations with 95% CIs between the intake of total sugars and sweets and BMI in the UK Biobank sample1

Intake of sweets BMI

Genetic correlations Intake of total sugars, g/d − 0.27 (−0.85, 0.32) − 0.23 (−0.29, −0.17)
Intake of sweets, handfuls/d — 0.67 (−0.27, 1.00)

Phenotypic correlations Intake of total sugars, g/d 0.34 (0.33, 0.35) − 0.04 (−0.04, −0.03)
Intake of sweets, handfuls/d — 0.09 (0.07, 0.10)

1Genetic correlations were calculated using genome-wide association summary results and LD score regression. BMI in kg/m2.
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GWAS of perception and intake of sweet substances 1731

FIGURE 2 Manhattan plots displaying the association -log10P value for each SNP in the genome and the perceived intensity of glucose (A), fructose (B),
NHDC (C), aspartame (D), and gSweet (E) in 1757 Australian adolescent twins and their siblings. Only the top SNP with P < 1.0 × 10−5 for each chromosome
is labeled. gSweet, general sweet factor (a weighted mean of ratings of glucose, fructose, NHDC, and aspartame); NHDC, neohesperidin dihydrochalcone;
SNP, single nucleotide polymorphism.

(P > 0.1). Because the associations between TAS1R2 rs35874116
and the intake of sugars were suggested to depend on BMI (6,
13), we followed previous studies by dividing the UK Biobank
sample into 2 groups based on a BMI score of 25 (n = 109,507
and 64,554 for BMI ≥ 25 and < 25, respectively) or including
BMI as a covariate, but no association was detected in any of the
tests (P > 0.12). Six SNPs in high LD within the GNAT3 gene
(rs1524600, rs6467217, rs6970107, rs6975345, rs10242727, and
rs6467192; r2 > 0.6 between the 6 SNPs) were marginally
associated with the intake of total sugars (P < 0.05, Supplemental
Table 11), with alleles associated with higher sucrose sensitivity
leading to a lower intake. The GLUT2 rs5400 was not associated
with the intake of total sugars and sweets (Supplemental Figure
4) and the null association remained after we included BMI as a
covariate or stratified the UK Biobank sample by a BMI score of
25 (P > 0.05). We successfully replicated the association between
FGF21 and intake, with the rs838133 A allele (β = 0.860 g/d,
SE = 0.170, P = 4.8 × 10−7) and rs838145 G allele (β = 0.782
g/d, SE = 0.167, P = 2.7 × 10−6) leading to higher intake of total
sugars.

Gene-based tests using fastBAT did not identify any significant
associations between TAS1R2, TAS1R3, GNAT3, and GLUT2 and

all phenotypes (P > 0.05), but there was a strong association
between FGF21 and the intake of total sugar in the UK Biobank
sample (P = 2.71 × 10−6). MetaXcan results showed some
marginal associations with P < 0.05 (Supplemental Table 9) and
the strongest association was between the intake of total sugar
and expression of TAS1R3 in brain tissue (P = 3.15 × 10−4).

Because the associations with TAS1R2, TAS1R3, GNAT3, and
GLUT2 were reported previously in samples of unknown or
mixed ethnicities, we wondered whether they were driven by
population stratification, i.e., there are mean differences in the
same sweet phenotype between populations and an artificial
association is created due to the difference in the allele frequency
between populations. We looked up their allele frequencies
using the 1000 Genomes reference panel (50) and found that
some of the allele frequencies, particularly for SNPs within
TAS1R3, GNAT3, and GLUT2, are very different between African
Americans and others (Table 4). Using the full sample of
the UK Biobank, which is comprised of mixed ethnicities, we
reproduced these associations with the intake of total sugars
and sweets and even BMI, but the associations became null
after adjusting for genetic PCs (Table 4) or after the sample
was stratified by ethnic group (Supplemental Table 12). We
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1732 Hwang et al.

FIGURE 3 Manhattan plots displaying the association -log10P value for each SNP in the genome and the perception of sucrose reported via ratings of
intensity (A), sweetness (B), and liking (C) in 686 US adult twins and unpaired individuals. Only the top SNP with P < 1.0 × 10−5 for each chromosome is
labeled. SNP, single nucleotide polymorphism.
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GWAS of perception and intake of sweet substances 1733

FIGURE 4 Manhattan plot for the meta-analysis of the perceived intensity of gSweet (Figure 2E) and sucrose (Figure 3A). The top single nucleotide
polymorphism with P < 1.0 × 10−5 for each chromosome is labeled. gSweet, general sweet factor (a weighted mean of ratings of glucose, fructose,
neohesperidin dihydrochalcone, and aspartame).

showed an unexpected association between rs5400 and BMI
(P = 1.04 × 10−8 after adjusting for genetic PCs) and the
association remained strong within the white-British-only subset
of the UK Biobank (P = 2.7 × 10−7).

Gene expression

We examined the expression levels of genes nearby the
suggestively associated SNPs (Supplemental Tables 1–4), genes
containing nonsynonymous variants (Supplemental Table 7),
those involved in the stomach inflammation pathway, and the
5 previously reported sweet taste genes (i.e., TAS1R2, TAS1R3,
GNAT3, GLUT2 [SLC2A2], and FGF21). The expression levels
of 133 genes and 121 genes were available in the in-house assays
for the taste tissue and in the GTEx database for other tissues,
respectively (presented as a heatmap in Supplemental Figure 5).
In general, expression levels of the same gene were similar across
all tissues. The 2 genes FUT2 and MAPT, which contain both
missense and nonsense mutations, were expressed particularly
higher in the salivary gland and the brain, respectively. The
former was also expressed in the taste tissue at a moderate level,
whereas the latter was barely expressed in the taste tissue. The
sweet taste receptor gene TAS1R3 was weakly expressed across
all tissues; the information on TAS1R2 and GNAT3 was only
available in the in-house data on taste tissue and they were barely
expressed.

Discussion
To our knowledge, this is the first large-scale GWAS of the

perception, liking, and consumption of sweet substances using
3 independent population samples of Australian adolescents and
US and UK adults. We found a strong association between
the FTO gene and sugar intake, and suggestive associations for
both the perception and intake of sweet substances. Whereas we

replicated the association between the FGF21 gene and sugar
intake, we found limited support for the previously reported
associations within the TAS1R2, TAS1R3, GNAT3, and GLUT2
genes.

The SNP associated with sugar intake (rs11642841) is highly
correlated with the repeatedly reported BMI-associated SNP
rs9939609 within the FTO gene (48) (r2 = 0.73 in the
UK Biobank white-British sample). The BMI-increasing allele
has been shown to increase the intake of energy (51, 52),
dietary fat (53), and protein (54); the risk of cardiometabolic
disorders (e.g., type 2 diabetes, coronary artery disease, and
hypertension); and fasting glucose and insulin concentrations
(55). Counterintuitively, in the present study the BMI-increasing
allele was associated with a lower intake of reported total sugars.
We further found negative genetic and phenotypic correlations
between sugar intake and BMI in the UK Biobank sample,
in agreement with an earlier observational study (56). These
negative associations could be because obese people derive a
greater proportion of energy from protein and fat and less from
carbohydrates (57). There may also be reporting bias, with those
who have greater BMI tending to underreport sugar intake, or
the possibility that our result is a chance finding because we
did not find information to replicate these associations in other
independent studies. In contrast, the intake of sweets, which
contributed to a part of the total sugars, and BMI were positively
correlated. This suggests that people who are overweight or obese
reduce calories by reducing the intake of total carbohydrates but
they still eat more sweets than people with normal weight.

We showed evidence of nonsynonymous variants associated
with both perception and intake of sweet substances. Particularly,
2 SNPs (rs62060920 and rs603985) associated with sugar intake
were correlated with not only amino acid–changing variants but
also stop codon–creating variants within the same genes, i.e.,
MAPT and FUT2, respectively. Expression levels of these 2 genes
MAPT and FUT2 were higher in the brain and the salivary gland,
respectively, suggestive of their roles in central and peripheral
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1734 Hwang et al.

TABLE 4 Associations between TAS1R1, TAS1R3, GNAT3, and GLUT2 SNPs and the intake of total sugars and sweets and BMI before and after adjusting
for genetic PCs using all participants from the UK Biobank sample of all ancestries1

Allele frequency PIntake of total sugars PIntake of sweets PBMI

Gene SNP:allele AFR AMR ASN EUR UKB No PC PC adjusted No PC PC adjusted No PC PC adjusted

TAS1R2 rs12033832:A 0.23 0.23 0.48 0.31 0.35 0.86 0.47 0.76 0.60 8.94 × 10−3 0.87
rs3935570:T 0.30 0.19 0.12 0.25 0.27 0.49 0.31 0.72 0.63 0.04 0.52

rs35874116:A 0.66 0.69 0.90 0.68 0.67 0.15 0.15 0.81 0.74 0.15 0.72
rs12137730:A 0.83 0.60 0.81 0.65 0.64 0.76 0.41 0.03 0.05 0.03 0.60
rs7534618:T 0.77 0.76 0.52 0.67 0.63 0.23 0.83 0.86 0.67 7.10 × 10−4 0.41
rs9701796:G 0.21 0.17 0.27 0.21 0.21 0.59 0.85 0.20 0.15 0.29 0.06

TAS1R3 rs307355:C 0.48 0.84 0.82 0.92 0.92 2.39 × 10−7 0.57 9.74 × 10−3 0.14 8.85 × 10−35 0.13
rs35744813:C 0.32 0.83 0.83 0.92 0.92 6.38 × 10−12 0.57 4.11 × 10−3 0.17 1.20 × 10−62 0.11

GNAT3 rs7792845:T 0.15 0.37 0.31 0.42 0.40 0.17 0.85 0.98 0.69 1.73 × 10−7 0.39
rs940541:T 0.11 0.33 0.24 0.37 0.35 0.23 0.79 0.80 0.92 1.55 × 10−8 0.13

rs1107660:T 0.11 0.34 0.26 0.37 0.36 0.18 0.88 0.74 0.96 4.35 × 10−8 0.28
rs1107657:T 0.11 0.34 0.26 0.37 0.36 0.19 0.85 0.75 0.96 2.85 × 10−8 0.24
rs1524600:C 0.45 0.90 0.87 0.89 0.88 7.32 × 10−6 0.55 1.00 × 10−3 0.02 1.67 × 10−30 0.53
rs6467217:T 0.52 0.92 0.87 0.89 0.88 3.36 × 10−4 0.69 2.00 × 10−3 0.02 7.39 × 10−21 0.73
rs6970109:C 0.53 0.92 0.87 0.89 0.88 6.28 × 10−4 0.77 2.45 × 10−3 0.02 1.06 × 10−19 0.75
rs6975345:T 0.24 0.87 0.86 0.87 0.87 1.59 × 10−7 0.84 3.55 × 10−4 0.02 1.98 × 10−47 0.93

rs10242727:A 0.24 0.87 0.86 0.87 0.87 2.34 × 10−7 0.87 4.07 × 10−4 0.02 1.11 × 10−46 0.95
rs6467192:G 0.29 0.88 0.86 0.87 0.87 4.31 × 10−7 0.70 8.46 × 10−4 0.03 7.40 × 10−41 0.83
rs6961082:C 0.86 0.97 0.87 0.95 0.94 0.18 0.42 0.31 0.39 0.66 0.39

GLUT2 rs5400:C 0.54 0.81 0.98 0.86 0.87 9.20 × 10−3 0.49 0.64 0.71 2.05 × 10−51 1.04 × 10−8 2

1Allele frequencies for AFR, AMR, ASN, and EUR are based on the 1000 Genome reference panel. n = 206,551 for the intake of total sugar; n = 20,532 for the intake of
sweets; n = 485,476 for BMI. See Supplemental Table 12 for the ancestral demography of the UK Biobank. AFR, African; AMR, Admixed American (i.e., Colombian, Puerto
Rican, and Mexican individuals); ASN, Asian; EUR, European; P, association P value for an SNP and a trait; PC, principal component; SNP:allele, single nucleotide polymorphism
and the allele used to calculate allele frequency; UKB, UK Biobank.

2P = 2.7 × 10−7 in all the Europeans from the UK Biobank (n = 407,708).

mechanisms regulating sugar intake. Another SNP, rs623965,
identified in the meta-analysis of sweet intensity and which is
correlated with a nonsynonymous variant within the KDMA4
gene, was recently shown to be associated with educational
attainment (P = 3.8 × 10−7) (58). This suggests a shared
molecular mechanism for the sweet taste perception and cognitive
function, which can be indirectly supported by our recent finding
of the phenotypic correlation between intelligence and gSweet
(rp = −0.07, P < 0.05) (32). These results highlight the potential
significance of the brain in the perception and intake of sweet
substances.

We failed to replicate the associations between sweet taste
perception and variants within the TAS1R2, TAS1R3, and GNAT3
genes in all 3 samples of European ancestry. Previous studies
reported these associations in smaller samples (n = 95 [6],
144 [7], and 160 [8]); moreover, 2 of these samples (7, 8)
were comprised of mixed ethnicities (i.e., Europeans, Asians,
and African Americans), in which the allele frequencies vary
(Table 4), and 1 was of unknown ethnicity (6). Their analyses did
not include genetic PCs to account for population stratification
because no genome-wide genotyping data were available and it
was unclear whether ethnicity was included as a covariate. Using
the full UK Biobank sample including mixed ethnicities, we
reproduced the associations with TAS1R3 and GNAT3; however,
the associations became null after adjusting for genetic PCs, sug-
gesting that spurious associations may arise for these particular
SNPs if population stratification is not considered appropriately.
This is why we could not replicate these associations in the
European-only populations. Nevertheless, the effect of TAS1R3
on sucrose preference was observed in an independent adult
female sample primarily composed of African Americans (16),
indicating that the TAS1R3 SNPs could have functional potency

for sweet taste perception within other ethnic groups. It is
noteworthy that the same genetic variants might affect sweet
perception and intake differently in different populations of the
same genetic ancestry owing to cultural differences, especially
those populations having traditional compared with obesogenic
foodways. Therefore, an ideal study design needs to consider the
effect of genetic ethnicity as well as the gene × environment
interactions.

In agreement with previous studies we observed no association
between the intake of sugars and sweet food and TAS1R3, but
we failed to replicate the associations with TAS1R2 (6, 9–14)
and GLUT2 (13, 17) in the large UK Biobank sample. As
some of these study samples were of mixed ethnicities, we
demonstrated that an artificial association with sugar intake and
even BMI could be created by population stratification (Table 4).
We found unexpectedly an association between GLUT2 rs5400
and BMI (P = 2.7 × 10−7 among white-British individuals in
the UK Biobank sample). However, this association is relatively
weak in an equally large European sample (P = 0.019) (59)
and is not in the top 751 independent associations in today’s
largest GWAS meta-analysis of BMI (n = ∼700,000 Europeans
including participants from the UK Biobank) (60), so its effect
on BMI requires further investigation.

Among the SNPs suggestively associated with sweet taste
perception, rs17457384 near the GABRB2 gene was associated
with the intake of sweets in the UK Biobank sample. This SNP
was identified in the meta-analysis of sweet intensity, with the
T allele being associated with a higher perceived intensity rating
of gSweet (Australian sample) and sucrose (US sample) and a
higher intake of sweets (UK Biobank sample). The GABRB2-
encoded protein is a receptor of neurotransmitters that mediate
synaptic transmission in the central nervous system and it is
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FIGURE 5 Heatmap showing the effect of SNP on the perceived intensity
of glucose, fructose, NHDC, aspartame, and gSweet in the Australian sample,
the perceived intensity, sweetness, and liking for sucrose in the US sample,
and the intake of sugars (grams per day) and sweets (handfuls of candies per
day) in the UK Biobank. Effect sizes are presented as β/SE (see Supplemental
Table 5 for details) and range from −2.63 to 5.2, with negative and positive
values coded in blue and red colors, respectively. SNPs identified in the
Australian sample affect all 5 Australian phenotypes in the same direction
and those identified in the US sample affect all 3 US phenotypes in the same
direction. Although these effects appear to be sample-specific, meta-analysis
identified 4 additional SNPs that have similar effects in both samples, of
which rs17457384 is associated with sweets intake in the UK Biobank, with
the allele for higher intensity ratings leading to a lower intake. gSweet, general
sweet factor (a weighted mean of ratings of glucose, fructose, NHDC, and
aspartame); NHDC, neohesperidin dihydrochalcone; SNP, single nucleotide
polymorphism. ∗ , P < 0.05; ∗∗, P < 1.0 × 10 −5 ; −, SNP not available.

highly expressed in the brain. This finding again signifies the
neurological influence on sweet consumption.

Differences in the association patterns between the Australian
adolescent and the US adult samples could be due to differences
in their study characteristics, including the sample age (i.e.,
mean ages were 16.1 compared with 36.8 y) and the measuring
scale (i.e., gLMS compared with VAS). We previously showed
that the perceived intensity of sweet solutions decreased from
adolescents to adults at a rate of 2–5%/y between ages 12 and
25 y (5). Measuring sweet taste phenotypes using gLMS and
VAS could lead to different data distributions (61). These together
make replications more difficult when the sample sizes are not
big enough. Notably, the genome-wide significant associations
for the bitter taste perception (i.e., rs713598, rs1726866,
and rs10246939 for propylthiouracil/phenylthiocarbamide and
rs10772420 for quinine [29, 62, 63]) were consistent between
the 2 samples (Supplemental Table 13). This indicates that the
genetics of sweet taste is more complicated and our findings
require further validation in larger samples.

Pathway analyses showed that the cellular process related to
stomach inflammation is associated with the perceived intensity
of sucrose in the US adult sample. Alteration in taste is one of the
symptoms of stomach gastritis (64, 65) and the association might
be linked via reflux or vomiting, which expose taste receptors in
the oral cavity to gastric acid (66). Mouse studies have shown
that taste receptors expressed in the stomach can modify gastric
motility and food intake (67, 68). As human sweet taste receptors
(i.e., TAS1R3; Supplemental Figure 5) are also expressed along
the gastrointestinal tract, perhaps molecules involved in stomach
inflammation could regulate the function of sweet taste receptors,
which in turn influences taste perception.

Despite our samples being considerably larger than any
previous studies of the associations we have examined, the
present study may still lack statistical power. In particular,
we were unable to detect genome-wide significant associations
for sweet taste perception. This suggests that sweet taste is a
polygenic trait and its variation is influenced by many SNPs,
each with a small effect. Genetically informative data on taste
perception are relatively limited compared with disease traits or
other sensory traits, such as vision (69) or hearing (70). This
is presumably due to variation in taste perception posing no
immediate threat to life, or to a lesser extent. There are large
genetic studies collecting food intake data (e.g., UK Biobank),
which may be used as proxies of taste perception. However, our
results indicate that the genetic profiles of intake of sweets can
be different from those of sweet perception. Therefore, using the
dietary data may not accurately capture individual differences in
taste perception and is less likely to detect the true underlying
genes, which highlights the value of our data sets.

In conclusion, this GWAS study showed an association
between FTO and the intake of total sugars, suggestive of shared
biology between the sugar consumption and BMI-related traits.
Findings from the present study were solely based on Europeans,
so whether they can be generalized to other ethnic groups requires
further investigation. The failure to replicate the associations
with TAS1R2, TAS1R3, GNAT3, and GLUT2 warrants future
studies using people with different ancestral backgrounds, such as
Africans and Asians. Lastly, our results suggest that genes apart
from those within the peripheral sweet receptor system are also
associated with the perception and intake of sweet substances
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and those involved in brain functions and stomach inflammation
could be a direction for future research.
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